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10.2 VAPOR-LIQUID EQUILIBRIUM (VLE)

CALCULATIONS

bubble-point pressure (BP)
dew-point pressure (DP)

dew-point temperature (DT)
isothermal flash (FL)

adiabatic flash (FA)

Table 10.1 Swummary of the Types of Phase Equilibria Calculations (This Table is Independent of the

Type

VLE Model)

Information

known

Information
computed

BP Tx=z Py, E y; = ZK!x!. =1 Easiest
i i
DP Ty=z Px, Dxi= > /K) = Not bad
i i
BT | Px=z Ty D= D Kx, =1 Difficult
i i
DT Py =z T x, Dx; = > h/K) =1 Difficult
i !
p i qout z(1-K)) Quite
» ’ ’ - 0 ~
FL - X, ¥, VIE Q Z_liir(V/F)(K‘.—l) EdbalforQ | S
)
PT" : z(1-K}) Most
FA AL V/E T = 0, E-bal )
Q:o X Yo g Z]!-'*'(V/F)(Ki—l) : d difficult
!




Principles of Calculations

Standard approaches to solving VLE problems utilize the ratio of vapor mole fraction to liquid
mole fraction, known as the VLE K-ratio:

K= y/x; 10.3

For a bubble

calculation, all the x; are known, and we find the y; by solving for the condition where Z y; =1

I

written in terms of x; namely ZK X; = 1. For dew calculations, all y; are known, and we solve

i

for the condition where sz. = 1 written in terms of y; and K. For a flash calculation, we solve
i

for the condition where Zx i~ z V; = 0 written in terms of the overall mole fraction z; and K.

I I

Raoult’s law (Like a Solution Ideal Gas law)

More Complex EOSs are presented in later chapters



Strategies for Solving VLE Problems

1. Decide if the liquid, vapor, or overall composition is known from the problem statement.

2. Identify if the fluid is at a bubble or dew point. If the fluid is at a bubble point, the overall
composition will be the same as the liquid composition. At the dew point, the overall com-
position will be the same as the vapor.

3. Identify if the P, T, or both P and T are fixed. Decide if the system is adiabatic.

4. The information collected in the first three steps can be used with the second column in
Table 10.1 to identify the method.

5. Select a method to calculate the VLE K-ratio.

6. Decide if the method will be iterative, and if so, generate an initial guess for the solution.
Approaches for handling iterative calculations are introduced in the following chapters and

examples' Table 10.1 Summary of the Types of Phase Equilibria Calculations (This Table is Independent of the
VLE Model)
Information Information Criteri
Type known computed —
BP Tx=z Py, Z y, = ZK,x‘, =1 Easiest
7 i
DP Ty=z Px, Dix =D /) =1 Not bad
i i
BT Px=z Ty, D= D Kx, =1 Difficult
i i
DT | RBy=z Tx, D=2 /K) =1 Difficult
i i
P T" T z(1-K)) _ . Quite
FL - x, v, V/IE Q Zl,-’f(V/F)(K.-—]) =0, EbalforQ | o
l
BT" z z(1-K)) Most
FA 2 , ¥, V/F, T —_—— 0, E-hal .
g=0 [®RTE 2iromE-D U E | e
l




Iterative Calculations

When the K-ratios vary, VLE calculations require iterative solutions from an initial guess. For per-
forming iterative calculations, useful aids include the Solver tool of Excel or the fzexro() or
fsolve () function of MATLAB. Many of the following examples summarize detailed calcula-
tions to illustrate fully the iterative procedure. In practice, the detailed calculations can be per-

formed rapidly using a solver. Online supplements summarize the use of the iterative aids and the
methods for successive substitution.



10.3 BINARY VLE USING RAOULT'’S LAW
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Figure 10.2 (a), (b). Phase behavior of the methanol-ethanol system. Left figure at 50°C. Right figure at
760 mm Hg. (P-x-y from Schmidt, GC. 1926. Z. Phys.Chem. 121:221, T-x-y from Wilson, A.,
Simons, E.L. 1952, Ind. Eng. Chem. 44:2214).



, P= szr +- .\:l(mer - stm) - x1P|‘m -+ (l —.t])stm - x1P|‘m + .tzpzlvm 10.4
Raoull's Law
for Bubble Pres- - . . . .
sure. Dividing by P we find the form of the bubble objective function summarized in Table 10.1,
suat sal
| = P 1 P 2 -
= -Fxl +—P—,\12 — le'l +K2x2 10.5
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(a) (h)

Figure 10.2 (a), (b). Phase behavior of the methanol-ethanol system. Left figure at 5(0°C. Right figure at
760 mm Hg. (P-x-y from Schmidt, GC. 1926. Z. Phys.Chem. 121:221, T-x-y from Wilson, A.,
Simons, E.L. 1952. Ind. Eng. Chem. 44:2214).
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Figure 10.3 (a), (b) Phase behavior of the pentane-hexane system. Left figure at 25°C. Right figure at
750 mm Hg. (P-x-y from Chen, S.S., Zwolinski, B.J. 1974. J.Chem. Soc. Faraday Trans. 70:
1133, Tx-y from Tenn, F.G, Missen, R.W. 1963. Can. .J. Chem. Eng. 41:12).
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Figure 10.3 (c); (d) Phase behavior of the benzene-toluene system. Left figure at 79.7°C. Right figure
at 760 mm Hg. (P-x-y from Rosanoff, M.A., etal. 1914. J. Am.Chem.Soc. 36:1993, T-x-y from
Delzenne, A.Q. 1958. Ind. Eng. Chem., Chem. Eng. Data Series. 3:224).
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Therefore, we conclude that the K-ratio for Raoult’s law? is

0Raoull‘s Law P "'al
Kratlo. K, = ;) or y.P = xPi 10.6

ypollmo

0 +————+———+—+—+—+
0 0.5 1

Xpentane

Figure 10.4 Data from Fig. 10.3 plotted with coexisting liquid and vapor values for each experimental tie
line, resulting in the x-y plot. Note that the data do not superimpose exactly because one data
set is isobaric and the other set is isothermal. Squares are T-x-y data. Circles are P-x-y data.

The diagonal is traditionally drawn in an x-y figure, and the data never cross the diagonal for
systems that follow Raoult’s law.
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Shortcut Estimation of VLE K-ratios

Therefore, we conclude that the K-ratio for Raoult’s law? is

0Raoull‘s Law P ?a!
K-ratio. K; = ;, or yP = xPi 10.6

7 { 1Y
§'(] { (!))\l —ﬁ)

K. = [ .
i Tp P Shortcut K-ratio 10.7
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Bubble Pressure

vul
For a bubble-pressure calculation, writing Z; 1 as ZK‘x‘. = 1, which is Z }) X, = 1
Multiplying by P, we may write i ; ;
P =x,P* + x,P,* 10.8
v, = xP /P = Kx, 10.9
550

150 ¥ —~+———— b+ ++
0 0.5 1
Xpentanes ¥pentane
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Dew Pressure

For a dew-pressure calculation, writing Z“:i =1 as Z(y,-/ K,-) = 1 and rearranging:
] i

i

}'1P+J"2P
vl val

Pl p2

=1 10.10

which may be rearranged and solved without iteration, because the vapor pressures are fixed at the
specified temperature:

p- 1 10.11

V %
B +J2

Y753 Y753

Py Py

Once the dew pressure is calculated, the value can be reinserted into Eqn. 10.6 to find the liquid
mole fractions:

— sal
x; = y,P/P" = y/K, 10.12
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Bubble Temperature

For a bubble-temperature calculation, writing Z y; =1 as ZK X; = 1, and rearranging:
i i
P= X Pl"m <+ szz"‘" 10.13

To solve this equation, it is necessary to iterate on temperature (which changes 7;"*) until P equals
the specified pressure. Then the vapor phase mole fractions are calculated using Eqn. 10.9.

val
y; = x P /P = Kxx; 10.9

Dew Temperature
For a dew-temperature calculation, writing le. =1 as ZU’/ K;) = 1, and rearranging:

i )
p=__ 1 10.14

y ;
M +J2

vul val
P 1 P 2

To solve this equation, it is necessary to iterate on temperature (which changes P;**) until P equals

the specified pressure. Then the liquid phase mole fractions are calculated using Eqn. 10.12.

x, = yP/P = y /K, 10.12
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General Flash
Figure 10.5 [lustration of a flash drum and vari-

able definitions for streams. Note that 2 V
F f : >

F need not be a liguid; F may be all .

vapor or partial vapor. The principles ’ - L

can be applied to a nonflowing system L=
as described for a binary on page 371.

To apply the procedure, the
overall composition of the components, z; total feed flow rate, F; and outlet 7 and P just need to be
known before the procedure is started.

LIF=1-VIF,

z, = x,(L/F)+y(V/F)
z; = x,[(1-V/F) +K(V/F)]

X, = % 10.15
ECTH(V/R)K, - 1)
= ziK; 10.16
yi - *

1 +(V/F)(K;— 1)
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One obvious thing to do at this point is to iterate to find the V/F ratio which satisfies Zx ; = 1.But
i
the flash problem is different from the dew- and bubble-point problems because we must also

solve z ¥; = 1. Fortunately, a reliable successive substitution method has been developed by Rach-

ford and Rice® to solve this problem using the objective function in - E v; = 0. Introducing the
i i

variable D.=x. -y, to denote the difference between x; and y; for each component,

Zr - Z y; = Z(v -y;) = ZD = 0, we iterate on F/F until the sum approaches zero. For a

i
bmary system, usmg the K, ratios, the objective function becomes

Zx—Zy = (x,—y)*(x,—y,) = D, +D, 10.17

— “](I-K ) + 42(] ) _
T+ (V/F)K,—1) T+ (7/F) K —1)

17



The steady-state energy balance for an general flash is given by

0 = FHF—LHL-VHV + Q
= F(Zz HT + Aﬂgu] - L(Z X HE+ AH,fm] V{Z yHY + AH M] 0
i {

where we indicate a common method of calculation of the enthalpy of a mixture as the sum of the
component enthalpies and the heat of mixing (Eqn. 3.24 on page 105). Writing in terms of F/F:

0= (ZA,HM Ang] -(1 —;”)(Zr HE+ m]-— Z} HY + m] g 10.19

10.18

18



Adiabatic Flash

An adiabatic flash differs from an isothermal flash because Q = 0 in Eqn. 10.19. The adiabatic
conditions will result in a temperature change from the feed conditions that is often significant. A
typical scenario involves an outlet pressure less than the inlet pressure, resulting in an evaporation
of a fraction of the feed. Because evaporation is endothermic, this type of flash results in a temper-
ature drop (often significant). We have seen this type of calculation for pure fluids using throttles in
Chapter 5. The additional complication with a mixture is that the components will distribute based
on their different volatilities. The objective of an adiabatic flash calculation is to determine the out-
let temperature in addition to the L and ¥ compositions. An adiabatic flash requires that Eqn. 10.19,
(Q=0), must be solved simultaneously with Eqn. 10.17. The vapor and liquid mole fractions for
Eqn. 10.19 are determined from Eqns. 10.15 and 10.16. The method is complex enough that even
simple assumptions, such as ideal mixing (Af7, ;. = 0), benefit from a computer algorithm.

The algorithm to solve for the adiabatic flash depends on the differences in boiling points of
the components. Usually the boiling points are different enough that an initial guess of 7 is used in
VLE Eqn. 10.17 (where ¥ and L are assumed to exit at the same 7)) to find an initial F/F where 0 <
V/F < 1. With that initial V/F, then the V" and L compositions (Eqns. 10.15 and 10.16) and then the
energy balance (Eqn. 10.19) are evaluated, often scaling Eqn. 10.19 by dividing by 1000 when the
enthalpy values are large. If the energy balance is not satisfied, then a new 7 trial is inserted into
Eqn. 10.17 and the loop continues. Egn. 10.19 is monotonic in 7 and increases when T decreases.
When the boiling points are very close for all components, such as with isomers, the calculation
converges better with an initial guess of F/F in Eqn. 10.17, which is solved by trial and error for the
T which satisfies the equation. The L and V' compositions and 7 are then used for the outlet enthal-
pies in Egn. 10.19 to generate a new value for F/F and the iteration continues until convergence.

19



10.4 MULTICOMPONENT VLE RAOULT'S LAW
CALCULATIONS

Extending our equations to multicomponent systems is straightforward. For a bubble calculation
we have

1 = (inpgaf)/P = Y xK, 10.20

For a dew calculation we have

¥; Y;
| = Pz: i = - 10.21
P\'at Ki
i i i

These equations may be used for bubble- or dew-pressure calculations without iterations. For bub-
ble- or dew-point temperatures, iteration is required. A first guess may be obtained from one of the
following formulas:

— wal
Thubble guess in Ti

i
2T, T 10.22
- or Taew guess = Zy‘-Tf‘”

Zyi Tc, i i
i

Taew guess

20



For flash calculations, the general formula is:

z(1-K,)

‘Z“‘*'_;y" ) ZDi -2 N Zi e

to find L/F and x; and y; are then found using Eqns. 10.15 and 10.16.

10.23
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Example 10.1 Bubble and dew temperatures and isothermal flash of
ideal solutions

The overhead from a distillation column is to have the following composition:

2{Ovechead)
Propane 0.23
lsobutane 0.67
n-Butane 0.10
Total 1.00

A schematic of the top of a distillation column is shown below. The overhead stream in relation
to the column and condenser is shown where ¥, , represents vapor flow and D, represents
liquid flow. In an ideal column, the vapor !ea'vm“h tray (going up) is in phase eguilibrium
with the liquid leaving the same fray (going down). 1f the cooling water to the condenser is
turned off, then only vapor product will be obtained, but this is not typical because the column
works better with some liquid L returning to the column. To obtain liquid product only. cooling
water is provided and the vapor product stream is turned off, and the condenser is known as a
total condenser. If cooling water is provided to partially condensc the vapor stream, the liquid
product stream is typically tumed off. Then the condenser provides additional scparation, oper-
ating as a partial condenser. /n an ideal partial condenser; the exiting vapor and liguid leave in
phase eguilibrium with each other:

Cooling’yo'mr
Overhead ~ /"~ Vapor Product, Ve
L 7 TCondenser

> Liquid Product, D4

(a) Using the shortcut K-ratio, calculate the temperature at which the condenser must
operate in order to condense the overhead product completely at 8 bar.

(b) Using the shortcut K-ratio, and assuming the overhead product vapors are in equilib-
rium with the liquid on the top plate of the column, calculate the temperature of the
overhcad vapors and the composition of the liquid on the top plate when operating at
the pressure of part a.

{c) The vapors arc condensed by a partial condenser operating at 8 bar and 320 K. Using
the shortcut K-ratio, what fraction of liquid is condensed?

22



Example 10.1 Bubble and dew temperatures and isothermal flash of
ideal solutions (Continued)

Solution: Usc the shortcut estimates of the K-ratios. Usc of a solver tool is recommended atter
developing an understanding of the manual itcrations summarized below:.

(a) To totally condense the overhead product, the mixture must be at the bubble-point tem-
perature or lower. The maximum temperature is the bubble-point temperature. To find = casy to cre-
the bubble-point temperature for the ternary system, we apply Eqn. 10.20 extended to ota an Bl
three components. The caleulation requires trial-and-crror itcration on temperature as mum
summarized in Table 10.1. quicky (e.g.,
Tabulated below, the shortcut K-ratio is calculated using Eqn. 10.7 at cach temperature mm be
gucss at § bar, and the y vahues from Egn. 10.9 are summed to check for convergence
tollowing the procedure sct forth in Table 10.1. Iterations arc repcated until the y's

sumto 1.
Guess 7=310K Guess T'=320K
Ki ¥i K; ¥
Csy 1.61 0370 2.03 0466
iCy 0.616 0.413 (.80 0.536
nCy 0438 0.044 0.58 0.058
Ey,= 0827 Ey= 1061
The temperatare has been bracketed, interpolating,
1.00 - 0.994
= + — - = : X
T =325 1123 —0.9 (320-325) = 348K 10.24

The temperature has been bracketed, interpolating,

1.000 - 0.82

1061 —0.827 (320-310) = 317K

=T=310~- (

(b) The saturated vapor lcaving the tray is in equilibrium with the liquid and is at its dew-

point temperature at 8 bar. Eqn. 10.21 is used. The calculation requires iteration on

temperature. Calculating the X, ratios as in part (a), the liquid phase compositions arc
calculated at cach itcration using Eqn. 10.12 until the values sum to 1.

Guess 7'=325K Guess 1'=320K

K; x; K; x;
Cy 226 0.102 2.03 0113
iCy 0.905 0.740 0.80 0.838
nCy 0.658 0.152 058 0.172
Er- 0994 Er= 1123




nntninor
Chap1Q/Fishem
can be modfiad 10
wark this example.

Example 10.1 Bubble and dew temperatures and isothermal flash of

ideal solutions (Continued)
Repeating the procedure at this temperatare a final time results in the liquid composi-
tions,
Guess T'=3248K
Kl' L
Cs 2.25 0.102
iCe 0.900 0.744
nCy 0.654 0.153
2‘.:; - 0.9%9

(c) Recognize that the solution involves an isothermal flash calculation because P and T
arc both specified. Begin by noting that the specified condenser temperature is
between the bubble temperature, 317 K, and the dew temperature, 324 K, so vapor-lig-
uid equilibrium is indeed possible. Because T and P arc already sct, Eqn. 10.7 is used
to calculate the K-ratio for cach component. Then, we seck a solution for Eqn 10.23 at
320 K and 8 bar. In the general flash routine, Fi . Fiaq,. and Ly, are used to denote
the flow rates for the flash dnum and we must adapt the flash variables to the column
stream names. We add “flash™ and “column™ subscript descriptors for increased clar-
ity. In the sohation, Fy . Viyo and Ly, o, represent the flow rates for the partial con-
denser, Fayon = ¥ cotumas Pitash = Fprod> a0 Litash = Dprod + Lookama- In the summarized
calculations below, V! Fush = Vrod'¥1 cotuma @nd Dy in the table is the objective
variablc for the flash calculation as used in Eqn. 10.23, not the column liquid product
tlow rate Dyy.g- Each table column summarizes a guess for flash ratio ¥V, ,/Fp,,, and
the resultant flash objective variable D,. The composition of the feed is given by z as
conventional for a flash calculation, which is the composition of ¥, coumar

A summary of the isothcnmal flash calculation is given below.:

F Guess Gluess ' Gluess
flsh Vot Faan =05 | VattFaen=04 | Vowt/Fiet = 0.23
B K Di=x—y D; | D; .
G 023 20 —0.1564 —0.1678 —0.1915
067 080 0.1489 0.1457 0.1405
aC, 010 0S8 0.0532 0.0505 0.0465
sumn = 0,0457 sam=00284 | sum=—0.0045
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Example 10.1 Bubble and dew temperatures and isothermal flash of
ideal solutions (Continued)

Interpolating between the last two results that bracket the angwer,

¥ fnsh 0.4-023
=023 +| ————————— .= (.00 = ()
F fsh 0.z (00234 To0.0035/ " 3) = 02533

Votashy'F prash = 0.25, applying Eqns. 10.15 and 10.16,
= {x; = {0.1829, 0.7053, 0.1117} and {y,} = {0.3713, 0.5642, 0.0648}

The compositions can be confirmed to be converged. The outlet composition of the
vapor, ¥4, is given by {)y} and it is clearly more eariched in the volatile components
than the inlet from the top of the column ¥y o0

Note: The flash problem converges move siowly than the bubble- and dew-
point calculations, so the third iteration is necessary.

25



Example 10.2 Adiabatic flash

Ethanol + mcthanol form a nearly ideal solution as showm in Fig. 10.2. An cquimolar feed at 760
mmHg is subjected to an adiabatic flash operating at 200 mmHg. Feed enters at 70°C and 43
mol/min. Find the exiting stream temperatures, flow rates, and compositions. Assume ideal soh-
tions and use the Antoine cquation for vapor pressures.

Solution: This is a dircct application of a procedure, so it is clear which VLE routine to usc: the
FA row of Table 10.1. We must combine the VLE procedure with energy balance. A bubble-
pressurc calculation at 70°C (not shown) shows that the feed is all liquid. Twwo solutions arc pro-
vided using different pathways for the enthalpy calculations. Both sohutions will usc the same
flash calculation procedures and the Antoine cquation is used with {methanol, cthanol }:

A= {8081, 8.1122}, B= {15823, 15929}, C= {239.73, 226.18}

Solution 1. This solation method calculates component enthalpics using a reference state of lig-
uid at 25°C for all specics where we set Hy, = 0. The enthalpy calculations use the pathway of
Fig. 2.6(a). The pathway is taken through the boiling point of cach component, as in Example
3.3. To computc stream cnthalpics, we usc ideal solations as shown in Example 3.3, ignoring
heat of mixing. Heat capacity constants and heats of vaporization arc taken from Appendix E.

The solution requires a gucss of T resulting in 0 < }/F < 1 that provides two phascs, and then a
check of the energy balance. Due to the complexity of the calculation, we itcrate on the T guess
manually, and automate the tedious parts of solving for F/F and checking the encrgy balance.
The solution is provided in MATLAB file Ex10_02.m. Some intermediate results are tabulated.




Because a compater is used, we skip preliminary bubble and dew calculations. Note that we do
not tabulate all values until O < F/F < 1. The first guess of 45°C is above the dew temperature.
The second guess of 357°C is below the bubble temperature. The next guess happens to give a
condition close to the bubble temperature, 8o we raisc the temperature guess slightly. The col-
umn OBJEB = (Eqn. 10.19¥1000. The compositions and enthalpics arc shown below and the
last row is converged. The exiting flowr rates are = FIF(43) = 0.09(43) = 3.87 mol'min, and L
=43 -3 87 = 39.13 mol/min. About 9% (molar basis) of the inlet is flashed, and the outlet tem-
perature is 40.2°C compared to an inlet of 70°C.

7°(C) P OBIEB | xpost | ymom = A Olmol) | H(mol) | H(Vmol)
45 298 | 1 '
35 932

40 0001 | 3137 | 050 | 033 4672 1481 39,149
41 043 | 1330 | 057 | 040 | 4672 1618 19,539
402 009 | 022 | 0515 | 0349 4672 1508 39,225

Solution 2. This solation method calculates component enthalpics using the pathweay of Fig.
2.6(c), the reference state of the clements at 25°C, the heats of formation of idcal gases, the gen-
cralized correlation for heat of vaporization in Eqn. 2.45, and the Cp®(25°C) from the back flap.
The results are slightly different from Solution 1, owing to the imprecision of Eqn. 2.45 and dif-
ferences between the heat capacitics. Process simulation software typically uscs this enthalpy
path and reference state.

We begin by finding the enthalpy of the feed relative to the elements at 25°C, noting that it is a
liquid ideal sotation. B = HY(70°C) = £ x{AH";, + Cp®(T — Ty) — AH¥F) = 0.5(-200,940 +
5.28(8.314)(70 — 25) — 35,976) + 0.5(-234,950 + 7.88(8.314)(70 — 25) — 38,595) =-252,769
J/mol. This takes carc of the first tenn in Eqn. 10.19. Noting that the feed is liquid, we might
suspect the flash outlet to be mostly liquid. Performing a bubble-temperature calculation at 200
mmHg gives 7= 40.00°C and H{40°C) = -256,901 and with no vapor stream results in 0 =
—4132 J/mol.* The temperatare must be slightly higher to move Q toward zero. Supposc we
“gucssed” that the temperature is 40.23°C." Then the flash calculation gives xpoy = 0.5173,
Yo =0.3515, ¥FIF=0.1042, H"(40.B"C) =-257,502. The formula for B is similar to that for

but omits the AH,*¥ contribution and replaces x; with y;, so A*(40.23°C) =-212,088. Fol-
lowing Egn. 10.19, Q@ = (1 - 0.1042)(=257,502) + 0.1042(-212,088) = 252,769 = (.1 J/mol. We
may assume that (.1 J/mol is sufficiently closc to zero.

ar . oA L. s . ~
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10.5 EMISSIONS AND SAFETY

volatile organic compounds (VOCs),

(also known as the head space). In some cases, the inert head space gas flows through the vessel,
and is called a purge or sweep gas. These gases typically have negligible solubilities in the liquid
phase and are thus considered noncondensable. There are several common types of unit operations
encountered with VOC emissions, which will be covered individually.

Filling or Charging

During filling of a tank with a volatile component, gas is displaced from the head space. The
displaced gas is assumed to be saturated with the volatile components as predicted with Raoult’s
1:}3; and the idfgal gas law. Initially in the hCE.ld space, n;'.e ad = (Plf;w )/ (RT) and after ﬁl!ir}g,

vead = (PVioqq)/ (RT), where the subscript ead indicates the head space. The volume of lig-
uid charged is equal to the volume change of the head space. The mole fractions of the VOC com-
ponents are determined by Raoult’s law, and the noncondensable gas makes up the balance of the
head space. The moles of VOC emission from the tank are estimated by y,{nfm i n{ea ;) for each

VOC.
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Purge Gas (Liquid VOC Present)

When a purge (sweep) gas flows through a vessel containing a liquid VOC, the effluent will contain
VOC emissions. At the upper limit, the vessel effluent is assumed to be saturated with VOC as pre-
dicted by Raoult’s law. For VOC component

Ani = "m'eep'km(yi/ync) 10.25

where y, = 1-— Z ¥;,» where the sum is over VOCs only. The variable k,, is the saturation level,
i

and is set to 1 for the assumption of saturation and adjusted lower if justified when the purge gas is
known to be unsaturated. The flow of noncondensables n can be related to a volumetric flow of

sweep
purge gas using the ideal gas law,

e Pl}.s'wee
n.\'weep = nt = —ﬁﬁ'l 10.26
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Purge Gas (No Liquid VOC Present)

Vessels need to be purged for changeover of reactants or before performing maintenance. After
draining all liquid, VOC vapors remain in the vessel at the saturation level present before draining.

The typical assumptlon upon purging is that the vessel is well mixed. A mo]e balance on the VOC
gives dn;/dt = —V;ng, e P - dividing by y; the equation becomes dn; /y;dt = —ny,, ., - The left-hand side
can subsequently be written n,,dy;/vidt = (PV, )/ (RT,,..) - (dy, )/() dt) and the right-hand
side can be written (PK., weep)/ (RTsweep) - When the sweep gas and tank are at the same tempera-
ture, which is usually a valid case, the equation rearranges to (dy,)/y; = (—Vsweep/ ¥ tank)d1 , Which
integrates to

Vi =¥ exp(—-—-——“ o t) 10.27
— tank
The emissions are calculated by
An;= g0 = v) 10.28
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Heating

During a heating process, emissions arise because the vapors in the head space must expand as the
temperature rises. Since vapor pressure increases rapidly with increasing temperature, VOC concen-
trations in the vapor phase increase also. Detailed calculations of emissions during heating are some-
what tedious, so an approximation is made; the emission of each VOC is based on the arithmetic
average of the molar ratio of VOC to noncondensable gas at the beginning and the end of the heating
multiplied by the total moles of noncondensable gas leaving the vessel. At the beginning of the heat-
ing, representing the VOC with subscript / and the noncondensables with subscript nc, the ratio of
interest is (1; /nye)’ = (i/Vne) = (ViP/yucP)’, and at the end (ni/npe) = (Vi/Vne)'= (iP/yacP). The
emission of VOC component i is calculated as

AR r i S
An. = ""K-“-'— + -}-)‘-)J 10.29

i
2 nc nc

where v, = 1 - Z ¥;, and the sum is over VOCs only. The value of An,,. is given by

1

iy N -
Vh ad (I_Z}’;]P (I—Zyi]P
_ _he : .
An,, = R ;' - } AR ep 10.30
[\ /N s
where the summations are over VOCs only and Ang,..., is the total moles of noncondensable that

are swept (purged) through the vessel during heating and is set to zero when purging is not used.
Eqns. 10.29 and 10.30 can overestimate the emissions substantially if the tank approaches the bubble
point of the liquid because y,. approaches zero, and then calculations are more accurately handled
by a more tedious integration. The integration can be approximated by using the method presented
here over small temperature steps and summing the results.
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Depressurization

Three assumptions are made to model depressurizations: The pressure is decreased linearly over
time; air leakage into the vessel is negligible; and the process is isothermal. The relationship is then
the same as Eqn. 10.29, where An,,. is calculated by Eqn. 10.30 using An, .., = 0.

+An 10.30

sweep

( Y ( )
 N-zufe| ((1-20)r
A _ ~head \ ,
n._= 1 1

nc R T T




Flash Point

The flash point is a property much different from that represented by the general flash or adiabatic
flash discussed earlier. Fire requires fuel, an oxidizer (air in this case), and an ignition source. The
flash point is the temperature above which a vapor mixture supports combustion when an ignition
source is present. When liquids burn, fire occurs on a liquid surface; the vapors near the surface are
burning, not the liquid itself. The flash point is important because it is the temperature at which the
Lower Flammability Limit (LFL) concentration is reached at the liquid surface. A flash can also
occur entirely in the vapor phase. When burning buildings explode in action movies, the movies are
depicting the real condition of the vapors in the building reaching the flash point as plastics and
other materials decompose. Fire fighters are very cautious entering buildings where a potential for
such explosions exist.

Z (L FL}:!/. 100) =1 flash point temperature condition for mixture 10.31

{

Because combustion requires an oxidizer, each fuel also has an Upper Flammability Limit

(UFL) above which there is not enough oxygen present to maintain combustion. Most accidents
occur near the LFL, which is the motivation for more discussion of LFL. Both the LFL and the

UFL are affected by inerts because of the effect on the ratio of oxidizer to fuel.
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10.6 RELATING VLE TO DISTILLATION

We introduced some major points about the importance of distillation in Section 3.2. Roughly 80% of
separations are done involving distillation and 70% of the capital cost of a chemical plant goes into
distillation equipment, and thus the proper application of vapor-liquid equilibria and design are
essential. Usually, one distillation column is required to separate any two components. To separate
three components to high purity requires two columns. Obtaining four components to high purity
requires three columns, and so forth. So a single reactor that requires two reactants and produces two
products (A + B — C + D) would probably require three distillation columns downstream if all the
components are desired in high purity. Pharmaceutical and speciality chemical plants have more by-
products than bulk chemical plants. This means that chemical engineers need to be fairly familiar with
VLE, especially in the fine chemicals industry.
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Figure 10.6 Schematic diagrams of distillation columns. (a) A typical chemistry laboratory
distillation apparatus; (b) close-up view of sieve trays showing the holes in the trays,
downcomers, and liguid on each tray; (c) a partial condenser operates like a flash unit.
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(b) McCabe-Thiele analysis based on assuming constant relative volatility,

g = (g N ) (dotted line) compared with experimental curve.
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The thermodynamics of the methanol + water system are summarized in Fig. 10.7. Fig.
10.7(a) shows that the solution bubble-point temperature is ~87°C. As it boils, the temperature
remains constant, but the vapor composition leaving the vessel is ~40 mol% MeOH. Let us call this
separation stage a. Forty percent is a big improvement over the initial 10%, but it is still mostly
water. What can you do to make it more pure? Why not condense the vapor to a liquid and collect it
in a separate pot to reboil it? After you have enough solution in that pot, take it to another boiler
and perform stage b, then repeat for stages ¢, d, e as shown in Fig. 10.7(a). After ~5 stages, you
could obtain 98% pure methanol. This is a simplification of multistage distillation at the conceptual

level. (Note that most process simulation software numbers stages from the column top which is
why we designated stages as letters rather than numbering from the bottom.) As outlined so far, it is
inefficient and oversimplified because we considered the liquid phase composition to be invariant
while the volatile component was boiling off. Separation textbooks provide the details on the mass
balances.
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The first law of thermodynamics tells us that energy is conserved. What if we could use the
heat of condensing the vapor from stage a as the heat of boiling in stage »? That would be a big
improvement. Furthermore, we can achieve this in minimal space if we use some clever plumbing.
If we put the pot for stage b on top of stage a, and put little holes in the bottom of the pot, then the
vapor boils through the holes faster than the liquid can weep back (Fig. 10.6(b)). The boiling point
of the mixture on stage b is lower than the vapor temperature coming from below (¢f. Fig. 10.7(a)).
When the warmer vapor from stage a contacts the cooler liquid on stage b, it condenses. But the
first law tells us that the heat of condensation must go somewhere. Where? It goes into boiling the
liquid on stage 5. Then we can do the same thing for stages ¢, d, e. This approach is called a tray
distillation column and it is very common throughout the chemical industry. Roughly 70% of distil-
lation columns are tray type.
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0 Light key and
heavy key
components are
used in preliminary
column design.

Most mixtures contain more than two components. It is common, however, to design the multi-
component column based on the separation of two key components. Because boiling point (in the
absence of azeotropes discussed later) increases with M., it is common to discuss separation based
on light components (more volatile) moving up the column, and seavy components moving down.
For preliminary column design a volatile light key (typically low M, thus light) and less volatile
heavy key component are designated. Splitting two key components implicitly splits components
lighter than the “light key” component from components heavier than the “heavy key” component.
The split (S) is the fraction that exits with distillate. The light key (LK) component is the least vol-
atile component with a split S; ;- > 0.5. System components lighter than the light key must be even
more volatile and exit as distillate. For example, consider a distillation of hexane, octane, decane,
and dodecane. If we designate octane as the light key, then the of hexane should also go out the top.
The heavy key is the lightest component (most volatile) with a split Sy < 0.5. In the example, we
could select decane as the heavy key and thus dodecane would go out the bottom also. In a perfect
world, the splits would be 100% for the light key and 0% for the heavy key, but that would require
an infinitely tall distillation column. More typical splits are 99% and 1%.
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0 Relative

volatility.

The split fractions define the relevant mass balances in distillation. The thermodynamics rele-
vant to distillation is implemented using the relative volatility in terms of the VLE K-ratios,

a; = K{K; 10.32

For the case of light and heavy key components,
aLHZKLK{fK]”( 10.33

For Raoult’s law, the K-ratios are independent of composition, and thus is the relative volatil-

ity,
= KJK; = (P/P)Y(P;™/P) = P{*/P*  Raoult’s law 10.34

For systems that don’t follow Raoult’s law, the relative volatility may vary through the column
owing to composition changes, but distillation is feasible as long as @;;; = 1. (We will show the
analysis for the nonideal «;; calculation in Section 11.11 on page 442.) The presence of other com-
ponents is of secondary concern for preliminary column design as long as a; ;= 1, so shortcut col-
umn analysis treats LK and HK as if the mixture were binary. It may be possible to improve «@; 5
through the addition of other components (e.g., extractive distillation), but that merely reinforces
the requirement of the overall system to the mandate that a; ;= 1.
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For the sake of modeling, the tray column is simplest to introduce as illustrated in Fig. 10.7(b).
Fig. 10.7(b) focuses on the composition changes only, neglecting the temperature effects. Fig.
10.7(b) also shows the result of approximating that the relative volatility is constant. A larger a;;

- - > - A J
results in a larger area under the x-y curve and an easier separation. If ¢; = 1, the curve collapses on

the 45° diagonal. The diagram shows “steps” between the equilibrium line and the operating line.
The equilibrium line represents the compositions at each tray as they leave. The operating line rep-
resents the compositions between trays. Moving up and down the column, the material balances are
shown graphically by stepping back and forth as we relate the material balance “on stage™ and “in-
between stage.” Comparing the curves for actual and constant ay;, note that a similar number of
stages is obtained. For the purposes of our model, constant relative volatility is a convenient
approximation for the equilibrium curve as shown. But there is still a significant detail that has
been omitted in our conceptual outline of distillation. Where did the liquid come from that is on the
trays of the tray column?

41



1 Equilibrium o
0.9 .
o Fixed— . '//
0.8 < 7 V
0.7 4 Actual/ 7 ‘ j;jj Total
- - ‘/. -
- 0.6 - l 7 N N Condenser
= 05 4 ',' ././ \ L L=V
k4 =Pt |
041 /" Operating Line ¢ x._;_’:ﬁ J D
034 /. M= =y
0.2/ ¥._Operating Line for LiV=1/{(1+1/R)
0.1 R=wx l L
0

0 02 04 06 08 1
X

Fig. 10.6(c) shows how the condenser on top of the column pours liquid back down to keep
some on the trays. The part that we pour back down the column (L) is called reflux. The part that
we recover as product is called distillate (D). The ratio of L/D is called the reflux ratio (R). The
reflux ratio controls the amount of product recovered as distillate. If we actually want to recover
some product (i.e., D # 0), then we must accept some value R # c. Finite values for R lead to the
dashed-dot operating lines in Fig. 10.7(b). To understand this, consider that the 45° diagonal on Fig.
10.7(b) corresponds to L/F = 1. It turns out that taking distillate from the top of the column leads to
slightly less separation on every stage, giving the dashed-dot lines of Fig. 10.7(b). Typical courses
in mass transfer operations explain how to estimate the dashed-dot lines from values of R. The key
point for now is that the value of R cannot be zero, or we will have no liquid on the trays, and it can-
not be infinite or we will recover no product. We can go a little further and say that it must be closer
to infinity for a distillation that has a relative volatility very near to unity, because the y-x curve in
that case stays very close to the diagonal. Beyond that, we simply need to accept that somebody has
analyzed this before and developed some equations for computing the minimum number of stages
to achieve a desired separation (at infinite reflux), the minimum reflux ratio, and the actual number
of stages. This is indeed the case, and the model equations are presented below.
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A shortcut distillation calculation for the height of the column for constant relative volatility
can be estimated from the Fenske equation,

n[SLx(l _SHK)]
Spx(1 -S7 k)
1na;:”H

N ideal solutions 10.35

min

where N,,,;,, is the minimum number of theoretical trays at infinite reflux and 7, is the geometric
mean of the relative volatility calculated using the column top and bottom compositions, T and P.
Typically, the number of actual trays is N, ~ 4N},,;,, with the space between trays being 0.6m. So a
column with 99 and 1% splits and a relative volatility of 3 would have ¥,,;,, = 8.4 and a height of
20 m. With this background, the importance of the K-ratios and «; ;; becomes clear. Note that if «;
=1,then N _. = co. The relative volatility changes with composition for nonideal systems, and
goes to 1 when an azeotrope exists. Then Eqn. 10.35 is not valid. We discuss such behavior in the
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10.7 NONIDEAL SYSTEMS
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Figure 10.8 (a), (b) Phase behavior of the methanol + 3-pentanone system. Left figure at 65°C. Right
figure at 76() mm Hg. (T-x-y from Glukhareva, ML, et al. 1976. Zh. Prikl. Khim. (Leningrad)
49:660, P-x-y calculated from fit of T-x-y.)
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Figure 10.8 (c), (d) Phase behavior of the 2-propanol + water system. Left figure at 30°PC. Right figure at
760 mm Hg. (T-x-y from Wilson, A., Simons, E.L., 1952. Ind. Eng. Chem. 44:2214, P-x-y from
Udovenko, V.V.,, and Mazanko. T.F 1967. Zh. Fiz. Khim. 41:1615.)
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o Positive devia-
tions from Raoult's
law. It is convenient
o say that the com-
ponents “dislike”
each other.

0 Relative

volatility equals 1 for
an azeotrope:

ay > 1 on one side
of the azeotrope
composition and

ay <1 on the other
side.

In Fig. 10.8 the bubble line lies above the Raoult’s law line, and these systems are said to have
positive deviations from Raoult’s law. Positive deviations occur when the components in the mix-
ture would prefer to be near molecules of their own type rather than near molecules of the other
component. Briefly, it is convenient to say that these components “dislike™ each other. The 2-pro-
panol + water system has vapor pressures that are close to each other relative to the deviation from
ideality. As a result, the positive deviations are large enough to cause the pressure to reach a maxi-
mum (i.e,. P"™ > P*" = P,*"). The presence of a maximum (or minimum) causes the phase enve-
lope to close at a composition known as the azeotropic composition. The nearness of the vapor
pressures matters, because any deviation from ideality would give a maximum (or minimum),
known as an azeotrope, if P\*" = P,*". As a counterexample, the methanol + 3-pentanone system
has significantly different vapor pressures for the components, and the deviations from ideality are
not large enough to cause azeotrope formation. Recalling that the dew and bubble lines represent
coexisting compositions at equilibrium, a maximum or minimum means that x; = y; and relative vol-
atility o; = 1 at the azeotrope: @ > | on one side of the azeotrope composition and & < 1 on the
other side. This means that distillation ceases to provide separation at an azeotrope composition,
and knowledge of azeotropes is critical for distillation design. When an azeotrope forms in a system
with positive deviations, the azeotrope is a maximum on the P-x-y diagram and a minimum on the
T-x-y diagram. To give a name to the type of azeotrope, the convention is to refer to azeotropes like
that of 2-propanol + water as a minimum boiling azeotrope, referring to the boiling temperature
reaching a minimum in composition. This can be confusing because the deviations from ideality are
referred to as positive with respect to Raoult’s Law on a P-x-y diagram. If you remember that “boil-
ing” refers to boiling temperature, it may help you to reduce confusion. The azeotrope on a P-x-y
diagram is a maximum pressure azeotrope. Since the vapor and liquid compositions are equiva-
lent at the azeotrope, a flash drum or distillation column cannot separate a mixture at the azeotropic
composition.
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Figure 10.9 (a), (h) Phase behavior of the acetone + acetic acid system. Left figure at 55°C. Right figure
at 7600 mm Hg. (T-x-y from York, R., Holmes, R.C. 1942. Ind. Eng. Chem. 34:345, P-x-y from
Waradzin, W., Surovy, J., 1975. Chem. Zvesti 29:783.)
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Figure 10.9 (c); (d) Phase Behavior of the acetone + chloroform system. Left figure at 35.17°C. Right
figure at 732 mm Hg. (T-x-y from Soday, F,, Bennett, GW., 1930. J Chem. Educ. 7:1336, P-x-y
from Zawidzki, V.J., 1900. Z. Phys. Chem. 35:129.)
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0 Negative devia-
tions from Raoult's

law. It is convenient
to say that the com-
ponents "like" each
other.

In Fig. 10.9 the systems have negative deviations from Raoult’s law because the bubble line
lies below the Raoult’s line. Similar azeotropic behavior is found in these systems if the vapor pres-
sures are close to each other or the deviations are large. When an azeotrope forms in a system with
negative deviations, the azeotrope is a minimum on the P-x-y diagram and a maximum on the 7-x-y

diagram. Therefore, this behavior is called a maximum boiling azeotrope or a minimum pressure
azeotrope. From a chemical perspective, negative deviations indicate that the components “like”
each other more than they like themselves. For example, mixing two acids may form an ideal solu-
tion, but mixing an acid with a base can give a negative deviation from ideality that feels warm to
the touch. This is consistent with the negative sign on exothermic heats of reaction.
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10.8 CONCEPTS FOR GENERALIZED PHASE

EQUILIBRIA
c %, 0

dU(T, P,nla My, M) = (__-Q) dp'*'(—(_'j) dT+ ( Oj dn; 10.36 0Theseequa-
: oP T.n ar Z an BT, Pjai l tions extend the use

of calculus from

Chapter 6 to com-

AG(T, Pnyymy, m) = (22) ap+(SE)  ar+Y(Z2)  am, 1037 vostonvansbes

( l 2 ) P Tn (/T P n Z (1}21 P’ T, nj:‘. L

At constant moles and composition of malenal, the mixture must follow the same con-
straints as a pure fluid. That is, the state is dependent on only two state variables if we keep the com-

posttion constant.
= (@G /0P)y,=¥ and (6G /AT)p,=—S;

dG = VdP - SdT+ Z( ;’) dn, 10.38
on/ p T,n,
=i

0 Chemical H;=(0G/ ony) P, T,n.;
potential. T

10.39

We commonly write

dG = VdP— SdT + Z wydn; 10.40




Partial Molar Properties

. partial molar Gibbs energy.

0 Partial molar
quantities provide a
mathematical way
to assign the over-
all mixture property

according to compo-

sition expressed in
moles or mole
fractions.

.= (0G/0n; :
#;=(6G/ ony) P, T, the chemical potential,
3 S . = M.
((;M/(,n.,)r, P, M;.

As a result, we may write

M= Zni!\_li or M= inil_ffi
i i

G =D nG = Y orG =3 xG = D xu
i i

i

i

10.41

10.42
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Closed Open Natural Variables
dU = TdS — PdV dU=TdS~ PaV+ Y pdn, sV
i
dH = TdS + VdP dH = TdS + ViP+ Y jt;dn,; S,P
i
dA = SdT - PdV dA=~SdT ~PdV + Y p1dn, TV
i
dG = ST+ VdP dG=~SdT+ VdP + ) _tdn, TP
i
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Equilibrium Criteria

dG=0 at equilibrium, for constant 7 and P 10.43

This equation applies to whatever system we define. Suppose we define our system to consist
of two components (e.g,. EtOH + H,0) distributed between two phases (e.g., vapor and liquid), dG
=dG" + dG" = 0, and at constant T and P, the moles may redistribute between the two phases, by
Eqn. 10.40 for both phases:

dGL+dGV = ,ulLdn{' + ,u%dn% +u lVdn l”+;1{dn§’ =0

But if component 1 leaves the liquid phase then it must enter the vapor phase (and similarly for
component 2) because the overall system is closed.

= dnf = —anV and dné‘ = —dnzV
=>(,u|V— ,uf)dn l”+(,u£’—;1§)dn£’ =0

The only way to make this equal to zero in general is:
0 The chemical

V- , L vV — , L potential of each
Hi Hi and H2 H3 10.44 component must
be the same in
Setting the chemical potentials and T and P in each of the phases equal to each other provides a :ﬁ:ﬂ‘::::’ at

set of constraints (simultaneous eauations) which mav be solved for nhase comnositions nrovided

L L
r all v N | A s =1=X302= 1)1
MJrpm \OMT Py \T2)rpa \92) TR,

which gives four equations with four unknowns (x,, x,, ¥, ¥,) that we can solve, in principle.'! The
first two equations are simply the equivalency of chemical potentials in the two phases. 53



Chemical Potential of a Pure Fluid

=G. 10.45

0 The chemical M pure i

potential of a pure
fluid is simply the
molar Gibbs energy. That is, the chemical potential of a pure fluid 1s simply the molar Gibbs energy. Pure components

can be considered as a special case of the same general statement of the equilibrium constraint.

Component Fugacity

Let us generalize our pure component fugacity relations to apply to components in mixtures:
0Fugacity i At constant 7, we defined R7dInf = dG (Eqn. 9.19) which can be generalized to define the fugacity

another way toex-  Of a component in a mixtures as
press the chemical

potential that is 0 n
used more widely in Carets (*) are RTdInf. =du, 10.46
engineering than zz;dp?ngﬁ?:trzper- - d !

chemical potential. ties in mixtures for f

while without a caret

the property is the

pure component f.

When working with

i, the meaning is

inferred from the

gonhext of the situa- 54
tion.



Equality of Fugacities as Equilibrium Criteria

ul(T,P) = uF(T, P)

A.If
- _ f;
p} ~H; pure = RTIn=

S

4

ufV—uF = RT ln[f}r/‘;ﬂ =0

7 =7E | atequilibrium.

10.47

10.48

10.49

10.50
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10.9 MIXTURE PROPERTIES FOR IDEAL GASES

We can now relate the mixing behavior to the partial molar properties. The partial
molar quantities for ideal gases must be the same as the pure component properties.

vie = v,

B£g= U,-afl?g=H-

I

Slg N Zn Slg ASmxx

i

ZniSjg—RZnilnyi or

i

i

S =Sy SE-RY y,Iny,
i

i

Therefore, the entropy of mixing is nonzero and positive:

”!IY

— Slg

i

ng = —RZy Iny. >0

and the partial molar entropy is

Sig = Si& - Rlny,

10.51

(ig) 10.52

(ig) 10.53

10.54
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The Gibbs energy and the fugacity will be at the core of phase equilibria calculations. The Gibbs
energy of an ideal gas is obtained from the definition, G = H — TS. Using H** an §* from above,

ig _ 778 g _ i ig _ ig i
i i i .

i

Therefore, the Gibbs energy of mixing is nonzero and negative:

. _ . Ig _ .
AGE = GiE- Y y.GE = RY ylny,<0 (ig) 10.56
i i
u = @G/ on)rpy,, = GF +RT{6(Znilny,-) /an,.] (ig) 10.57
1 T.P.n._.
=i
The derivative is most easily seen by expanding the logarithm before differentiation, In y,=1n n; —
In n. Then,
(@(Zni Inn, - lnnZni) /an.i] = Inn,+1-1-Inn = lny, 10.58
i i T.P.n

Therefore, we find the chemical potential of an ideal-gas component:

ig g
#i = G+ RTny, (ig) 10.59




.ig

15 4 ure = RTIN-Z— = RTIny, or f1% = y,f8 (ig) 10.60

ig i, pure
/ i, pure

By Eqn. 9.22, f;ﬁm = P, resulting in the fugacity of an ideal-gas component:

fi%=yP (ig) 10.61

Therefore, the fugacity of an ideal-gas component is simply its partial pressure, y;£. This makes
the ideal-gas fugacity easy to quantify rapidly for engineering purposes. One of the goals of the cal-
culations that will be pursued in Chapter 15 is the quantification of the deviations of the fugacity
from ideal-gas values quantified by the component fugacity coefficient.

0The fugacity of
a component in an
ideal-gas mixture is
particularly simple; it
is equal to the y, P,
the partial pressure!
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10.10 MIXTURE PROPERTIES FOR IDEAL SOLUTIONS

0 Lewis-Randall
rule for component
fugacity in an ideal
solution.

ASIS.
“Umix _ _Z‘ Inx;

RT RT

AGIS.  AHIS.  ASIS.
mix _ mix mix __ E xilnxi

AGmi.\f =G - in Gi

i

mn: _ Z (/1

i

= 21 ln(—J

AG,,: I

R,;"” = le.lnxi = inln(f)
I

10.63 0The entropy of

mixing is nonzero
for an ideal solution.

10.65

10.66

10.67

By comparing the relations in the logarithms, we obtain the Lewis-Randall rule for ideal solutions:

A‘i.s' R
.fj /f, X

=

10.68



10.11 THE IDEAL SOLUTION APPROXIMATION AND
RAOULT'S LAW

By our equilibrium constraint,
17 = fF 10.69

By our ideal solution approximation in both phases, the equilibrium criteria becomes

vif = x;fF 10.70

Now we need to substitute the expressions forf,iV andj,iL that we developed in Chapter 9. The fugac-
ity of the pure vapor comes from Eqn. 9.25:

f;-V - w,-VP 10.71

The fugacity of the liquid comes from Eqn. 9.39:

L sat
vo(P-P
L _  sat, sat i i
./i - (‘01' Pi exp( RT ] 1072
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Combining Eqns. 10.70-10.72,

V,'L ( P Pisat)
RT

V sat _ sat
yi(oiP=xi(oi P, exp[

Writing in terms of the K] ratio,

vV

¥, Pi. at|i¢isatexp[ Vl.L(P - Pisat)/R T]j|
P

Note: at reasonably low pressures,

sat
Py

~1,and exp[V; (P- P ") /RT]~ 1

i

resulting in Raoult’s Law;,

Psat
S |

_ sat
or |V = x;P; 1073 @ goouits lan
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